Abstract

Disruption of circadian genes affects metabolic homeostasis. Regular exercise programs prevent metabolic dysfunction and alter circadian gene expression In this study, we investigated whether exercise affects light stress-induced circadian rhythm derangement and metabolic resistance. A circadian rhythm derangement mouse model was designed by extending the light exposure by two hours (14 L/10 D) for three weeks. Nine-weekold male mice were single-caged and divided into four groups: sedentary groups with or without light stress, and voluntary wheel-trained groups with or without light stress. In addition, differentiated myotubes were cultured in the presence of dexamethasone with or without 5-aminoimidazole-4-carboxamide-1-beta-4-ribofuranoside (AICAR). The comprehensive laboratory animal monitoring system was used to analyze the metabolic changes in mice. Moreover, reverse transcription-polymerase chain reaction (RT-PCR) was used to quantify the mRNA expression levels of circadian genes in animal and cell culture models. Three weeks of light stress reduced the running distance and increased the weight of mice. In addition, VO2 consumption and heat production were increased during the night cycle under non-stress conditions but not under stress conditions. PCR analysis revealed that exercise and stress altered the expression levels of circadian genes in the hypothalamus and quadriceps muscles. mRNA expression levels of period circadian regulator 1 were downregulated in the quadriceps muscles of the stressed sedentary group compared to that in muscles of the non-stressed sedentary group. Furthermore, differentiated myotube cells cultured in the presence of dexamethasone, with or without AICAR, showed distinct oscillation patterns at various time points. Our study demonstrates that exercise partially prevents metabolic disruption by regulating the circadian gene expression in skeletal muscles.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.