Abstract

ABSTRACT Accurate measurement of ozone concentration, especially in workplaces is a crucial component of managing indoor air quality and protecting workers’ and building occupants’ health and safety. Some factors such as gaseous pollutants (like volatile organic compounds (VOCs)), relative humidity, and air velocity and direction could interfere with monitor readings. This study examined the impact of these environmental factors on the responses of six commercial ozone monitors: three UV photometry, two electrochemical and one semiconductor metal oxide. The results demonstrated that environmental physical parameters (i.e. air velocity and relative humidity) often slightly affected UV instrument’s performance, while significant effects were seen in electrochemical and semiconductor monitors. Furthermore, chemical parameters (only VOCs including ethanol, acetone and toluene) had more influence on UV ozone monitors than those using electrochemical and metal oxide techniques.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call