Abstract

Background Type 1 diabetes (T1D) is an autoimmune disorder that results in the destruction of pancreatic beta cells, causing a shortage of insulin secretion. The development of T1D is influenced by both genetic predisposition and environmental factors, such as vitamin D. This vitamin is known for its ability to regulate the immune system and has been associated with a decreased risk of T1D. However, the specific ways in which vitamin D affects immune regulation and the preservation of beta cells in T1D are not yet fully understood. Gaining a better understanding of these interactions is essential for identifying potential targets for preventing and treating T1D. Methods The analysis focused on two Gene Expression Omnibus (GEO) datasets, namely, GSE55098 and GSE50012, to detect differentially expressed genes (DEGs). Enrichr (Ma'ayan Laboratory, New York, NY) was used to perform enrichment analysis for the Gene Ontology (GO) biological process and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways. The Search Tool for the Retrieval of Interacting Genes 12.0 (STRING) database was used to generate a protein-protein interaction (PPI) network. The Cytoscape 3.10.1 (Cytoscape Team, San Diego, CA) was used to analyze the PPI network and discover the hub genes. Results The DEGs in both datasets were identified using the GEO2R tool, with a particular focus on genes exhibiting contrasting regulations. Enrichment analysis unveiled the participation of these oppositely regulated DEGs in processes relevant to the immune system. Cytoscape analysis of the PPI network revealed five hub genes, MNDA, LILRB2, FPR2, HCK, and FCGR2A, suggesting their potential role in the pathogenesis of T1D and the response to vitamin D. Conclusion The study elucidates the complex interaction between vitamin D metabolism and immune regulation in T1D. The identified hub genes provide important knowledge on the molecular pathways that underlie T1D and have the potential to be targeted for therapeutic intervention. This research underscores the importance of vitamin D in the immune system's modulation and its impact on T1D development.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.