Abstract

Background:Recent studies have shown that addiction may be caused by abnormality of neurotransmission in the brain. Two neurotransmitters that involve into morphine addiction are dopamine and glutamate. The glutamatergic and dopaminergic systems are also involved in morphine tolerance and morphine withdrawal syndrome signs. Ascorbic acid (AA), as the antioxidant releases from the glutamatergic neurons, modulates the action of the dopamine and glutamate systems. In this study, the effect of AA on morphine self-administration and morphine withdrawal symptoms has been investigated.Materials and Methods:Male Wistar rats (250 - 300g) were anesthetized with ketamine (11%) and xailazine (15%). The cannula was inserted into the right jugular vein, and it was fixed subcutaneously on the skull. After surgery the animals were placed in individual home cages, and they were allowed to recover from the operation for five days, before the test. The animals were subjected to self-administration morphine for12 consecutive days, two-hour/sessions. The number of infusions and number of active and passive lever pressings were recorded.Results:An intra peritoneal injection of Ascorbic acid (AA) (400 mg/kg, i.p.), 30 minutes before morphine self-administration, produced a significant decrease in 12 days self-administration of morphine and withdrawal syndrome signs (P < 0.05). The morphine withdrawal signs (MWS) were recorded after naloxone precipitation, which decreased significantly with the injection of AA (400,700mg/kg), (<0.05). The number of self-infusions and the number of active lever pressings had significantly decreased after AA injection (P < 0.05).Conclusion:The chronic administration of AA may prevent the development of tolerance and physical dependence on morphine self-administration via the glutamatergic system.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.