Abstract

Introduction. Measuring user experience, though natural in a business environment, is often challenging for recommender systems research. How recommender systems can substantially improve consumers’ decision making is well understood; but the influence of specific design attributes of the recommender system interface on decision making and other outcome measures is far less understood. Method. This study provides the first empirical test of post-acceptance model adaption for information system continuance in the context of recommender systems. Based on the proposed model, two presentation types (with or without using tag cloud) are compared. An experimental design is used and a questionnaire is developed to analyse the data. Analysis. Data were analysed using SPSS and SmartPLS (partial least squares path modeling method). Statistical methods used for the questionnaire on user satisfaction were a reliability analysis, a validity analysis and T-tests. Results. The results demonstrate that the proposed model is supported and that the visual recommender system can indeed significantly enhance user satisfaction and continuance intention. Conclusions. In order to improve the satisfaction or continuance intention of users, it is required to improve the perceived usefulness, effectiveness and visual attractiveness of a recommender system.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.