Abstract
Ventilation plays an important role in the spontaneous heating of coal in an underground coal mine. If the ventilation rate is too high, heat is carried away by convection. If the ventilation rate is too low, the reaction rate becomes oxygen-limited. The effect of ventilation on the spontaneous heating of coal was investigated in an isothermal oven in this study. Experiments were conducted on three U.S. coal samples with ventilation rates ranging from 100 to 500 cm 3/min. Experiments under ventilation were conducted to determine the critical ambient temperature, which is the minimum oven temperature required for a coal sample to achieve thermal runaway. Spontaneous heating tests were then conducted at various ventilation rates at the critical ambient temperature and the results were compared with spontaneous heating tests without ventilation. It was found that there is an optimum ventilation flow to produce the maximum rate of temperature rise at the critical ambient temperature. When the coal sample particle size was increased, a higher critical ambient temperature was required. The results in this study have application in the prevention of spontaneous combustion in underground coal mines.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Journal of Loss Prevention in the Process Industries
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.