Abstract

The Particle Swarm Optimization (PSO) algorithm is a flexible heuristic optimizer that can be used for solving cardinality constrained binary optimization problems. In such problems, only K elements of the N-dimensional solution vector can be non-zero. The typical solution is to use a mapping function to enforce the cardinality constraint on the trial PSO solution. In this paper, we show that when K is small compared to N, the use of the mapped solution in the velocity vector tends to lead to early stagnation. As a solution, we recommend to use the untransformed solution as a direction in the velocity vector. We use numerical experiments to document the gains in performance when K is small compared to N.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.