Abstract

We report the effect of varying cobalt thickness on the temperature-dependent time decay of the electrical resistance of Co/Sb multilayer samples. We find that for a given temperature, a five fold change in the Co thickness produces a 100 fold change in the characteristic decay time of the resistance. We find that the characteristic decay time, as a function of temperature, follows an Arrhenius law. During deposition, the Co evolves single domain magnetic nanoparticles, on the Sb, in either a Volmer-Weber or Stranski-Krastanov growth mode. This metastable state is then encased in 2.5 nm of Sb producing an embedded nanoparticle system. Scanning tunneling microscopy measurements taken before sample aging (annealing at a given temperature for enough time to complete the resistance decay) and after aging show that these nanoparticles undergo morphological transformations during aging. These transformations lead to well defined time dependent decays in both the magnetization and the electrical resistance, making this material an excellent candidate for an electronic time-temperature sensor.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.