Abstract

This article aims to study the effect of non-uniform distribution of spontaneous curvature on shape transformation of two-phase vesicles via an evolutionary method. Their dynamic evolution is developed based on conventional Helfrich theory, considering bending of the membrane and friction in the surrounding fluid in each phase with variable spontaneous curvature. The variation of spontaneous curvature is assumed to be a function of arc length in each domain considering the effects of inducing factors (surrounding solution concentration and the membrane-protein interactions such as scaffolding and insertion). Membrane pearling from a large vesicle is simulated by the model and compared with the result of constant curvature and also with empirical observations. It can be shown that accurate simulation of some membrane deformation mechanisms depends on careful consideration of key factors such as the SC variations. In addition, the importance of different uniform and non-uniform distributions of spontaneous curvature is discussed with reference to specific cases.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.