Abstract

Haptic information can be used to create our perception of the stiffness of objects and to regulate grip force. Introducing noise into sensory inputs can create uncertainty, yet a method of creating haptic uncertainty without distorting the haptic information has yet to be discovered. Toward this end, in this article, we investigated the effect of varying haptic information between consecutive interactions with an elastic force field on stiffness perception and grip force control. In a stiffness discrimination task, participants interacted with force fields multiple times. Low, medium, and high variability levels were created by drawing the stiffness level applied in each consecutive interaction within a trial from normal distributions. Perceptual haptic uncertainty was created only by the medium variability level. Moreover, all the variability levels affected the grip force control: the modulation of the grip force with the load force decreased with repeated interactions with the force field, whereas no change in the baseline grip force was observed. Additionally, we ascertained that participants formed their perceived stiffness by calculating a weighted average of the different stiffness levels applied by a given force field. We conclude that the medium variability level can be effective in inducing uncertainty in both perception and action.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.