Abstract

We report a first-principles calculations to study the effect of a vanadium-carbon (VC) monolayer on the adsorption process of tungsten (W) and carbon (C) atoms onto tungsten-carbide (WC) (0001) surface. The essential configuration for the study is a supercell of hexagonal WC with a (0001) surface. When adding the VC monolayer, we employed the lowest energy configuration by examining various configurations. The total energy of the system is computed as a function of the W or C adatoms? height from the surface. The adsorption of a W and C adatom on a clean WC (0001) surface is compared with that of a W and C adatom on a WC (0001) surface with VC monolayer. The calculations show that the adsorption energy increased for both W and C adatoms in presence of the VC monolayer. Our results provide a fundamental understanding that can explain the experimentally observed phenomena of inhibited grain growth during sintering of WC or WC-Co powders in presence of VC.

Highlights

Read more

Summary

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.