Abstract
In this paper, Cu, Al and Ni were plated on the AB 5–5 mass% LaMg 3 composite hydrogen storage alloy using a vacuum evaporation plating method. The phase structure and the electrochemical properties were investigated. The X-ray diffraction (XRD) analysis shows that the phase structure is not changed obviously after the plating Cu, Al and Ni on the composites. The electrochemical tests show that maximum discharge capacity, high rate dischargeability (HRD), dischargeability at low temperature and cyclic stability was improved by vacuum evaporation plating Cu, Al and Ni. Maximum of discharge capacity of the AB 5–5 mass% LaMg 3 composite alloy plating Ni can reach 351 mAh/g, which is 3.5% higher than that of the untreated. HRD at I d = 1200 mA/g of the composite alloy plating Cu is 45.0% of that at 60 mA/g, which is 20.4% higher than the untreated. Discharge capacity of the composite alloy plating Cu at low temperature 233 K is 205 mAh/g, which is 57.3% of that at 298 K, and it is much higher than 36.8% of the untreated composites. The discharge capacity retention of the composite alloy plating Al after 200 cycles is 7.8% higher than the untreated.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.