Abstract

PurposeThe purpose of this paper is to investigate the diffusion behaviors of different atoms at the Cu/Cu3Sn interface and the vacancy formation energy, diffusion energy barrier and vacancy diffusion activation energy.Design/methodology/approachThe diffusion behaviors of different atoms at the Cu/Cu3Sn interface are analyzed, and the vacancy formation energy, diffusion energy barrier and vacancy diffusion activation energy are obtained using molecular dynamics simulation. The nudged elastic band method is used to evaluate diffusion energy barrier for Cu/Cu3Sn system.FindingsIt is found that the vacancies in the Cu/Cu3Sn interface promote the interfacial diffusion, and the formation energy of Cu vacancy in the Cu crystal is larger than that in Cu3Sn crystal. In addition, the formation energies of Cu1 vacancy and Cu2 vacancy are close to each other in Cu3Sn crystal, and they are all less than the formation energy of Sn vacancy. Furthermore, the vacancy diffusion barrier and vacancy diffusion activation energy of the Cu/Cu3Sn interface are calculated, and the results show that the vacancy diffusion activation energy of Sn was higher than that of Cu. Finally, by comparison of diffusion activation energies of different diffusion mechanisms, Cu→Cu1vac is the most possible migration path at all temperatures.Originality/valueIt is concluded that the vacancies in Cu/Cu3Sn interface promote interfacial diffusion, and the activation energy of vacancy diffusion in most diffusion mechanisms decreases with the increase of temperature.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call