Abstract

We have investigated the effect of ionizing radiation from the UV stars (hot prewhite dwarfs) on the intergalactic medium (IGM). If the UV stars are powered only by gravitational contraction they radiate most of their energy at a typical surface temperature of 1.5×105 K which produces a very highly ionized IGM in which the elements carbon, nitrogen and oxygen are left with only one or two electrons. This results in these elements being very inefficient coolants. The gas is cooled principally by free-free emission and the collisional ionization of hydrogen and helium. For a typical UV star temperature ofT=1.5×105 K, the temperature of the ionized gas in the IGM isT g =1.2×105 K for a Hubble constantH o=75 km s−1 Mpc−1 and a hydrogen densityn H =10−6 cm−3. Heating by cosmic rays and X-rays is insignificant in the IGM except perhaps inHi clouds because when a hydrogen atom recombines in the IGM it is far more likely to be re-ionized by a UV-star photon than by of the other two types of particles due to the greater space density of UV-star photons and their appreciably larger ionization cross-sections. If the UV stars radiate a substantial fraction of their energy in a helium-burning stage in which they have surface temperatures of about 5×104 K, the temperature of the IGM could be lowered to about 5×104 K.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.