Abstract

Climate change caused by CO2 emissions is a controversial topic in today’s society; improving CO2 emission efficiency (CEE) is an important way to reduce carbon emissions. While studies have often focused on areas with high carbon and large economies, the areas with persistent contraction have been neglected. These regions do not have high carbon emissions, but are facing a continuous decline in energy efficiency; therefore, it is of great relevance to explore the impact and mechanisms of CO2 emission efficiency in shrinking areas or shrinking cities. This paper uses a super-efficiency slacks-based measure (SBM) model to measure the CO2 emission efficiency and potential CO2 emission reduction (PCR) of 33 prefecture-level cities in northeast China from 2006 to 2019. For the first time, a Tobit model is used to analyze the factors influencing CEE, using the level of urban shrinkage as the core variable, with socio-economic indicators and urban construction indicators as control variables, while the mediating effect model is applied to identify the transmission mechanism of urban shrinkage. The results show that the CEE index of cities in northeast China is decreasing by 1.75% per annum. For every 1% increase in urban shrinkage, CEE decreased by approximately 2.1458%, with urban shrinkage, industrial structure, and expansion intensity index (EII) being the main factors influencing CEE. At the same time, urban shrinkage has a further dampening effect on CEE by reducing research and development expenditure (R&D) and urban compactness (COMP), with each 1% increase in urban shrinkage reducing R&D and COMP by approximately 0.534% and 1.233%, respectively. This can be improved by making full use of the available built-up space, increasing urban density, and promoting investment in research.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call