Abstract

Todays, most Iraqi cities suffer from extremely hot-dry climate for long periods throughout the year. However, most urban patterns that exist inside these cities are not suitable for this harsh conditions and lead to an increase in the value of the Urban Heat Island (UHI) index. Consequently, this will increase outdoor human thermal discomfort as well as energy consumption and air pollution in cities. This study attempts to evaluate the effect of UHI mitigation strategies on outdoor human thermal comfort in three different common types of urban patterns in the biggest and most populated city in Iraq, Baghdad. Three different mitigation strategies are used here – vegetation, cool materials, and urban geometry – to build 18 different scenarios. Three-dimensional numerical software ENVI-met 4.2 is utilised to analyse and assess the studied parameters. The input data for simulations process are based on two meteorological stations in Baghdad: Iraqi Meteorological Organization & Seismology, and Iraqi Agrometeorological Network. All measurements are taken in a pedestrian walkway. The results of different scenarios are compared based on their effect on human thermal comfort. Outdoor thermal comfort is assessed according to Predicted Mean Vote index, as mentioned in ISO 7730 standard. This study provides a better understanding of the role of UHI mitigation strategies on human thermal comfort in the outdoor spaces of Baghdad's residential neighbourhoods. This can help generate guidelines of urban design and planning practices for better thermal performance in hot and dry cities.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call