Abstract

In the hydroforming of curved sheet parts with a small thickness-diameter ratio, qualified parts are difficult to be manufactured when using the traditional hydroforming process. To solve this problem, double-layer sheet hydroforming was proposed and the wrinkle-free sheet parts were obtained in the authors’ previous study, but the inhibition mechanism of forming defects is far from perfection. Therefore, in this paper, the inhibition mechanism of forming defects is investigated by the combination of FE simulations and technological experiments. Different from the previous research, 2198 Al-Li alloy sheet was selected as the lower sheet. Other conditions such as heat treatment status and thickness are the same as before. The principle of wrinkle elimination can be concluded into the following two aspects. On the one hand, the upper sheet cannot be wrinkled during hydroforming, On the other hand, the surface blank holder pressure is applied in the suspending area. In addition, the beneficial friction between this two sheets changes the radial stress state of the lower sheet and makes the radial strain at some specific area (punch contact area and die corner area) decreased. In conclusion, qualified sheet parts can be manufactured by double-layer sheet hydroforming.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call