Abstract
ABSTRACT In the present work, we employed the DFT (Density Functional Theory) to investigate the electronic and magnetic properties of Ni2MnGa Heusler alloy. We focused on the structural transition between tetragonal and cubic structures related to the band Jahn Teller effect. The structural electronic and magnetic properties are calculated for cubic and tetragonally distorted structures. According to the optimisation of total energy versus volume, the tetragonal phase is the ground state for Ni2MnGa alloy 0 K. The band structure and density of state calculations show the ferromagnetic (FM) behaviour, with a total magnetic moment of 4.053 µB and 19.21% of spin polarisation at the Fermi level. Ni2MnGa is a cubic compound above 276 K under a thermal effect, where it gets its shape memory behaviour. Applying uniaxial stress according to the z axis, the studied alloy undergoes a phase transition to the parent phase (cubic) at a pressure around 2.8 GPa. Ni2MnGa alloy has the double possibility of phase transition under thermal effect and uniaxial stress.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.