Abstract

The effect of branching on the blood circulation and tumor targeting of polymer nanovehicles in vivo was investigated in this study. For the purpose, star-branched poly(lactic acid) and poly(2-methacryloyloxyethyl phosphorylcholine) (PLA-PMPC) copolymers with umbrella-type AB3, (AB3)2, and (AB3)3 architecture were synthesized by branching at the PLA core. Micelles self-assembled from these copolymers were used to evaluate the effect of core branching on blood circulation and tumor targeting The results showed that branching changed the behavior of polymeric self-assembly in solution, thereby changing the size and surface anti-fouling performance of the polymeric micelles. Moreover, star-branched copolymer micelles with a higher branching degree allowed their payload to persist better in blood (half-time prolonged from 7.1, 8.6 to 13.8 h) and for a 1.72-fold higher content at the tumor site. These studies suggest that raising the branching degree of amphiphilic copolymer potentially offers a promising strategy for the design of carriers capable of enhanced circulation and targeting in vivo.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.