Abstract

Ultra-thin, oxidation-resistant, pinhole-free alumina coatings were deposited on silicon carbide (SiC) particles using atomic layer deposition (ALD), and investigated as environmental barrier coatings (EBCs) for high-temperature steam oxidation. The uncoated and alumina coated SiC particles were exposed to high-temperature steam for 20 h at temperatures ranging from 1050 °C to 1150 °C to assess oxidation rates. The kinetic triplet (activation energy, rate constant, and pre-exponential factor) for each sample was determined using the D4 kinetic model (representing 3-dimensional diffusion) which was demonstrated to be accurate via the isothermal isoconversional method. Activation energies for oxidation of 247.4 ± 0.1 kJ/mol, 250.6 ± 0.5 kJ/mol, and 253.0 ± 1.0 kJ/mol were calculated for uncoated SiC, SiC coated with a 5 nm alumina film, and SiC coated with a 10 nm alumina film, respectively. Reaction rate data for the oxidation reaction of uncoated SiC and SiC coated with a 10 nm film indicate that the ALD coating reduces the rate of oxidation of SiC by up to a factor of 5 for steam oxidation at temperatures between 1050 °C and 1150 °C. This is the first investigation of steam oxidation kinetics for SiC coated with an ALD deposited EBC. The results of this study indicate that ultra-thin alumina films deposited by ALD act as effective EBCs with oxidation resistance comparable to CVD films that are orders of magnitude thicker.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call