Abstract

Objective: The aim of this study was to investigate the effect of two different types of high-flux dialysis membranes on insulin resistance among patients who are receiving hemodialysis (HD) due to end-stage renal failure (ESRF). Materials and methods: Forty-six (21 female, 25 male) patients were included in the study, who were on HD treatment due to stage-5 chronic renal failure. Prior to the study, fasting insulin resistance via Homeostasis Model Assessment-Insulin Resistance (HOMA-IR) and fractioned urea clearance (Kt/V) values were calculated using the urokinetic model. The polysulfone (PS) dialysis membrane of all patients included in the study was replaced with “polyarylethersulfone, polyvinylpyrrolidone, polyamide (PPP)” high-flux membrane that has the same surface area over 12 weeks. At the end of the 12-week period, HOMA and Kt/V values were recalculated. Results: At the end of the 12-week period, Kt/V values rose statistically significant from 1.575 to 1.752 (p = 0.002). HOMA-IR values declined, though not statistically significant, from 3.268 to 2.926 (p = 0.085). PPP high-flux membrane increased the Kt/V values significantly compared to the PS membrane, while it decreased the insulin resistance and increased insulin sensitivity. Conclusion: The two different types of high-flux dialysis membranes used for HD have different effects on insulin sensitivity. Compared to the PS membrane, PPP high-flux membrane decreased insulin resistance by increasing insulin sensitivity among non-diabetic ESRF patients.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.