Abstract

This paper presents a study on the feasibility of packaging a sensor element by a thin biocompatible coating. The goal of the work was twofold; Firstly to investigate the possible impact of the coating on sensor element performance; Secondly to examine the sensor element functionality after soaking into true human synovial fluid for more than 30 days. Sensor elements with two different structures of TiO2, the amorphous and the anatase, were examined and compared to uncoated elements. The device under test was a piezoresistive pressure sensor element designed for in vivo applications. Pressure characteristics were measured before and after Atomic Layer Deposition of the TiO2 coatings. Sensor signals were examined and visual inspection of the sensor element surfaces were done after more than 30 days soaking in true human synovial fluid. Throughout the soaking period the shift in output signal was higher and varied more for uncoated elements than for coated ones. Our results indicate that a 20 nm thick TiO2 coating can provide good protection towards the harsh synovial fluid.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.