Abstract

The aim of this study was to investigate the water vapor adsorption behavior and mechanical properties of poly (lactic acid) (PLA)/zeolite (5, 10, or 15 phr) composites prepared with triethyl citrate (TEC; 20 phr) via a melting process. TEC was used to improve the flexibility of the PLA and the dispersibility of the zeolite in TEC-zeolite suspensions that were ultra-sonicated. It was found that zeolite was uniformly dispersed in the PLA matrix, and the interfacial adhesion between the PLA matrix and zeolite was enhanced by TEC. In addition, the tensile strengths and Young's modulus of the composites improved with increasing zeolite content. The PLA/zeolite composites prepared with TEC had increased water vapor permeability and contact angles compared to neat PLA and standard PLA/zeolite due to the presence of TEC. In particular, TEC accelerated the hydrolysis of the PLA surface in a high humidity environment, resulting in an improvement in water vapor sorption capacity. At the same zeolite content of 15 phr, the equilibrium moisture content (EMC) values of PLA/zeolite films prepared with TEC increased by up to 39.25 mg/g whereas those prepared without TEC only increased by up to 24.33 mg/g. The results suggest the possibility of applying PLA/zeolite films prepared with TEC as a flexible active packaging material.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.