Abstract

Triclosan has been incorporated into toothpaste to enhance inhibitory effects on bacterial metabolism in dental plaque. Many studies have confirmed these effects by showing a reduction of accumulation of dental plaque, gingivitis and calculus. However, there is no evidence for triclosan having an inhibitory effect on the dental plaque-induced demineralization of the dental hard tissues. Therefore, the effect of 0.3% triclosan added to non-fluoride and fluoride toothpaste was tested in an in vitro model, in which bovine enamel specimens were to be demineralized by acids produced in overlaying Streptococcus mutans suspensions. In a first set of experiments the toothpastes were added to the S. mutans suspensions at 1:100, 1:1000 and 1:10,000 (w/v) dilutions. After 22 h incubation at 37 degrees C the suspensions were removed and assessed for calcium and lactate content, and pH. In this set of experiments, triclosan had no additive protective effect to the non-fluoride or fluoride toothpaste. In a second set of experiments, the enamel specimens were immersed daily for 3 min in 30% (w/v) slurries of the toothpastes before the 22 h incubation with the S. mutans suspensions. Under these conditions, triclosan showed an additional protective effect compared with non-fluoride toothpaste at a low concentration of S. mutans cells (0.07 mg cells dry weight per 600 microL suspension). It is concluded that the enamel surface may act as a reservoir for triclosan, which may protect the enamel surface against a mild acid attack. In combination with fluoride, however, as in toothpaste, triclosan has no additional protective effect against demineralization.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.