Abstract
The conventional Polymethyl methacrylate (PMMA) bone cement is not biodegradable and not bioactive to bond with the native bone and causes tissue necrosis resulting from its high exothermic polymerization. Hence, biodegradable bioactive bone cements with suitable setting time and mechanical properties should be introduced. In this study, novel bioactive bone cements containing Calcium Sulfate Hemihydrate (CSH), Bioactive Glass (BG), and Tricalcium Silicate (TSC) were developed. Firstly, CSH and BG binary system was optimized based on preliminary setting and mechanical tests. Secondly, the composite bioactive bone cements were obtained by adding different quantities of TCS to the optimized CS-BG (1.3:1 wt % ratio) system. All groups exhibited desirable handling properties, an initial setting time of lower than 15 min, injectability of greater than 85%, and controlled degradability. Moreover, they demonstrated initial compressive strength values of higher than 12 MPa, superior to trabecular bone. After 28 days of hydration, the compressive strength of the cement containing 30% TCS reached 51.04 MPa. Furthermore, the present bone cements showed favorable bioactivity and bone-bonding ability as a result of calcium carbonate and hydroxyapatite (HA) formation. Furthermore, this novel bone cement exhibited appropriate biocompatibility and mesenchymal stem cell attachment, suggesting its potential for clinical applications.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Similar Papers
More From: Ceramics International
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.