Abstract
Diabetes is a multifactorial syndrome that affects the functioning of the renin-angiotensin system (RAS). The role of advanced glycation end products (AGEs) in diabetes is well known. In the present study, we hypothesized that the prevention of AGE accumulation or abrogation of AGE synthesis using an AGE inhibitor, aminoguanidine (AG), in streptozotocin (STZ)-induced diabetic animal modelswould affect the progression of diabetes and its related complications. We determined the effects of aminoguanidine (AG), an AGE inhibitor, in STZ-induced diabetic rats by determining various indices of RAS and renal functions. Additionally, we also investigated the effect of the drug, AG, on various hemodynamic and physiological functions in the body of the animals. Male Sprague Dawley rats weighing 200-250 g were assigned to four groups (n = 4-6): Vehicle, Vehicle+AG, STZ-induced, and STZ-induced+AG rats. Type 1 diabetes was induced by a single intraperitoneal (IP) injection of streptozotocin (55 mg/kg) dissolved in sodium citrate buffer. The control groups (Vehicle) were injected with buffer. The blood glucose levels were measured after 48 hours, and animals with blood glucose levels > 300 mg/dL were included in the study. Blood glucose levels in the vehicle rats were also determined to ensure non-diabetic conditions. After confirmation, AG was administrated at a dose of 1 g/L in drinking water for two weeks. Urine was collected to measure the glomerular filtration rate (GFR), and the immune reactivity for AT1 and AT2 proteins was analyzed by immunoblotting. Data were expressed as mean ± standard error of the mean(SEM), and a p-value < 0.05 was considered statistically significant. Diabetic rats had a significant drop in body weight, accompanied by increased food and water consumption. The diabetic rats exhibited significantly increased urine flow and GFR. These phenotypes were significantly or considerately reversed by AG treatment in the STZ+AG-treated diabetic rats. Aminoguanidineprevented the increase in blood sugar levels compared to STZ-induced diabetic rats alone (295.9 ± 50.69 versus 462.3 ± 18.6 mg/dL (p < 0.05)). However, it did not affect the glomerular filtration rate (GFR) and glomerular damage, as assessed by the renal histopathological studies. The STZ-induced diabetic rats had an increased sodium excretion (3.24 ± 0.40 mmol) and significantly increased expression of the AT2 receptor and that of the AT1 receptor, which was slightly reversed by the treatment with AG. Treatment with AG decreased sodium excretion (2.12 ± 0.63, as compared to the diabetic rats). These rats also had modestly decreased expression of the AT2 receptor (0.99 ± 0.07 versus 1.12 ± 0.08, as compared to the STZ-induced diabetic rats), while theAT1 receptors showed a slight increase in the STZ+AG-treated rats compared to the STZ-induced diabetic rats (1.1 ± 0.19 versus 1.08 ± 0.12). This study highlights the action of the drugAG in not exacerbating any damage in diabetic rats. Employing AG as a pharmacological intervention to prevent an increase in blood sugar adds a new dimension to controlling increased blood sugar and preventing diabetic complications. The employability and pharmacological intervention of the drug AG, in diabetes, therefore, need a renewed and further investigation.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.