Abstract

A series of calculations have been carried out to evaluate the effect on cumulus mineral compositions of solidification of trapped intercumulus liquid in orthocumulates. The calculation assumes local equilibrium between phases, and that the system remains chemically closed during crystallization of the trapped liquid. The latter assumption is held to be valid on a scale of tens to hundreds of centimeters. It is not necessary to know the composition of the trapped liquid, as the calculation only requires an estimate of FeO content and trapping temperature. The change in composition of a mineral from that of the initially precipitated cumulus crystals to the final composition after complete solidification is termed the “trapped liquid shift”. Its magnitude depends on the modal proportions of cumulus phases and the initial porosity, and is only weakly dependent on initial phase compositions. Trapped liquid shifts are significant when compared with mineral composition changes occurring during fractional crystallization. Crystallization of 30% trapped liquid gives rise to shifts of up to 10 mol. percent in Mg number of olivine or pyroxene. The size of the shift becomes greater when the initial cumulus assemblage has a lower total FeO+MgO content, and vice versa. As a result of the relationship between trapped liquid shift and cumulus mode, mineral composition variations and trends may be generated in sequences of cumulates which originally had constant compositions of cumulus minerals. For example, in a cyclic unit grading from a pyroxenitic base to an anorthositic top, crystallization of a uniform proportion of trapped liquid will result in an apparent iron enrichment trend from bottom to top of the cycle, as has been observed in the Upper Critical Zone of the Bushveld Complex.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.