Abstract

We employed the Born-Hill-Milstein elastic-stability theory with the aid of molecular statics and density functional theory simulations to investigate the effect of transverse loading on the ideal tensile strength of six face-centered-cubic materials. The ideal strengths of the materials were found to be largely dependent on the transverse loadings. For the case in which the transverse loadings are symmetric to each other, the ideal strength is determined by a phase transformation from tetragonal to orthorhombic structures induced by elastic instability, and the ideal strength linearly increases or decreases with the applied tensile or compressive loadings, respectively. For asymmetric transverse loadings, the ideal strength decreases with increasing asymmetry of the applied loadings.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.