Abstract

Introduction: Transcranial pulsed current stimulation (tPCS) is an emerging noninvasive brain stimulation technique that has shown significant effects on cortical excitability. To date, electrophysiological measures of the efficiency of monophasic tPCS have not been reported. Objective: We aimed to explore the effects of monophasic anodal and cathodal-tPCS (a-tPCS/c-tPCS) at theta (4 Hz) and gamma (75 Hz) frequencies on theta and high gamma electroencephalography (EEG) oscillatory power. Methods: In a single-blind, randomized, sham-controlled crossover design, 15 healthy participants were randomly assigned into 5 experimental sessions in which they received a-PCS/c-tPCS at 4 and 75 Hz or sham stimulation over the left primary motor cortex (M1) for 15 min at an intensity of 1.5 mA. Changes in theta and high gamma oscillatory power were recorded at baseline, immediately after, and 30 min after stimulation using EEG at rest with eyes open. Results: a-tPCS at 4 Hz showed a significant increase in theta power compared with sham, whereas c-tPCS at 4 Hz had no significant effect on theta power. a-tPCS at 75 Hz produced no changes in high gamma power compared with sham. Importantly, c-tPCS at 75 Hz led to a significant reduction in high gamma power compared with baseline, as well as compared with c-tPCS at 4 Hz and sham stimulation. Conclusion: The results demonstrate the modulation of oscillatory brain activity by monophasic tPCS, and highlight the need for future studies on a larger scale to confirm these initial findings. Impact statement Transcranial pulsed current stimulation (tPCS) is a novel brain stimulation technique. Recently, tPCS has been introduced to directly modulate brain oscillations by applying pulsatile current over the target brain area. Using both anodal and cathodal monophasic tPCS at theta and gamma frequencies, we demonstrate the ability of the stimulation to modulate brain activity. The present findings are the first direct electroencephalography evidence of an interaction between tPCS and ongoing oscillatory activity in the human motor cortex. Our work recommends tPCS as a tool for investigating human brain oscillations and open more studies in this area.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call