Abstract
0.04C-16Cr and 0.04C-16Cr containing 26ppm B ferritic stainless steels were smelted by using a vacuum induction furnace. Then 65% boiling nitric acid method and the electrochemical potentiokinetic reactivation method (EPR) were used to research their intergranular corrosion sensitivity. Meanwhile, electrochemical test method (Tafel polarization curve method, the anode circular polarization curve method) and chemical immersion method were used to research their pitting corrosion resistance. The results showed that the corrosion rate of 0.04 C-16Cr stainless steel containing 26ppm B in 65% boiling nitric acid is lower than that of 0.04 C-16Cr stainless steel. The reactivation rate of 0.04C-16Cr containing 26ppm B in dilute sulphuric acid medium significantly reduced compared with that of 0.04C-16Cr. The pitting corrosion potential, self-corrosion potential and the value of (Eb-Ep) of the stainless steel containing with 26ppm B in chlorideions medium reduced, while the corrosion rate increased compared with the stainless steel without B addition. It indicates that trace boron addition improves the intergranular corrosion resistance and repair ability of the passive film of the 0.04C-16Cr ferritic stainless steel after pitting corrosion process in chloride ions medium, but it also promotes the pitting corrosion tendency of the steel. Besides, introduction B to 0.04C-16Cr ferritic stainless steel reduces the steel’s corrosion resistance in active dissolved zone and promotes its intergranular corrosion tendency in chloride ions medium. The electrochemical characteristics of local corrosion are consistent with the results of chemical immersion test.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.