Abstract

Abstract The effect of topography on storm-track intensity is examined with a set of primitive equation model integrations. This effect is found to be crucially dependent on the latitudinal structure of the background flow impinging on the topography. If the background flow consists of a weak double jet, higher topography leads to an intensification of the storm track downstream of the topography, consistent with enhanced baroclinicity in that region. However, if the background flow consists of a strong single jet, topography weakens the storm track, despite the fact that the baroclinicity downstream of the topography is again enhanced. The different topographic impact results from the different wave packets in the two background flows. For a weak double-jet state, wave packets tend to radiate equatorward and storm-track eddies grow primarily at the expense of local baroclinicity. In contrast, for a strong single-jet state, wave packets persistently propagate in the zonal direction and storm tracks are affected not only by local baroclinicity but also by far-upstream disturbances via downstream development. It is the reduction of the latter by the topography that leads to weaker storm tracks in a strong single-jet state. The implications of these findings for Northern Hemisphere storm tracks are also discussed.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.