Abstract

Molecular dynamics is employed to investigate the nanoscale cutting process of monocrystalline silicon with diamond tool. Materials removal behavior of workpiece through diamond cutting is studied. The effects of tool geometry on the deformation of material including rake angle, clearance angle and edge radius were carefully explored by analyzing the phase transformation, chips, hydrostatic stress, shear stress and workpiece deformation. The investigation shows that a positive rake angle tip, a larger clearance angle tip or a small edge radius tip would result in a smaller cutting force, a better subsurface and a larger chipping volume. Moreover, a bigger negative rake angle tip cutting has a larger hydrostatic stress and shear stress. However, a positive rake angle tip cutting has a larger average friction coefficient than a negative rake angle tip cutting, which means that negative rake angle tip cutting experiences a lower resistance rate. It is also found that a tip with positive rake angle or smaller edge radius will improve the smoothness of a ground surface. In addition, a bigger clearance angle tip cutting generates a lower temperature in workpiece.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.