Abstract

Chip formation behavior of micromachining is governed by the tool edge radius effect as reflected by the characteristic changes in plastic deformation at varying combinations of tool edge radius, r, and undeformed chip thickness, a. At high a/r above unity, concentrated plastic deformation takes place at the primary and secondary deformation zones akin to conventional macromachining. Decreasing a/r below unity promotes localized deformation ahead of the tool edge radius, with the expansion in fraction of the primary deformation zone and the simultaneous shrinkage in fraction of the secondary deformation zone following the reductions in total tool–chip contact length. Further decrease of a/r below a critical threshold brings forth a total suppression of secondary deformation zone and resulted in an ultimate localization of plastic deformation ahead of the tool edge radius. This is perceived as a transition in chip formation mechanism from concentrated shearing to a thrust-oriented behavior.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.