Abstract

The average toner charge-to-mass ratio (q/m) is an important metric for two-component xerographic developers since xerographic development of solid and line or dot images is normally a simple inverse function of q/m. However, q/m is a distributed function, and for other nonimage processes such as background development and machine dirt generation, the “tails” of the charge distribution are more important than the average q/m value. Thus, a detailed assessment of any particular xerographic developer should involve the measurement and analysis of the entire charge spectrum. This viewpoint will be illustrated in the present paper by a comparison of simultaneous average q/m data (from a total-blow-off procedure) and distributed charge/size (q/d) data (from a charge spectrum). In particular, the direct connection between these two types of charge measurements will be highlighted, both for normal charging processes and for admix processes that involve the addition of uncharged toner to a charged developer. Additionally, both positive and negative charging processes will be considered, with a common set of test toners being driven to both polarities via specific carrier coatings.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.