Abstract
One of the neuropathological hallmarks of Alzheimer's disease (AD)—causing neurodegeneration and consequent memory deterioration, and eventually, cognitive decline—is amyloid-β (Aβ) aggregation forming amyloid plaques. Our previous study showed the potential of a tocotrienol-rich fraction—a mixture of naturally occurring of vitamin E analogs—to inhibit Aβ aggregation and restore cognitive function in an AD mouse model. The current study examined the effect of three vitamin E analogs—α-tocopherol (α-TOC), α-tocotrienol (α-T3), and γ-tocotrienol (γ-T3)—on Aβ aggregation, disaggregation, and oligomerization in vitro. Thioflavin T (ThT) assay showed α-T3 reduced Aβ aggregation at 10 μM concentration. Furthermore, both α-T3 and γ-T3 demonstrated Aβ disaggregation, as shown by the reduction of ThT fluorescence. However, α-TOC showed no significant effect. We confirmed the results for ThT assays with scanning electron microscopy imaging. Further investigation in photo-induced cross-linking of unmodified protein assay indicated a reduction in Aβ oligomerization by γ-T3. The present study thus revealed the individual effect of each tocotrienol analog in reducing Aβ aggregation and oligomerization as well as disaggregating preformed fibrils.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.