Abstract

The nature and rate of virus-specific protein synthesis were determined in tobacco mosaic virus-infected protoplasts as a function of time after inoculation. Samples of infected and mock-infected protoplasts were exposed to radioactive amino acid for relatively short sequential time periods and the consequent labeled proteins were assessed following SDS-polyacrylamide gel electrophoresis and fluorography. The synthesis of three virus-specific proteins of molecular weights 160,000, 135,000, and 17,500 was confirmed. Synthesis of all three proteins was first detected during the 5- to 7-hr postinoculation period at which time the synthetic rate of the 135,000-dalton protein was greatest. This was soon overtaken by the 17,500-dalton capsid protein, the synthetic rate of which kept increasing until it accounted for a major portion of total protoplast protein synthesis. At 1 day postinoculation, it accounted for 50% and, at not quite 2 days, 70% of the total protein synthesis. Evidence is presented to suggest that virus-specific protein synthesis occurs in addition to, rather than at the expense of, normal cellular protein synthesis.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.