Abstract

In recent years, the importance of inflammation in restenosis has been recognized gradually. When vascular injury occurs, NF-κB, which controls transcription of many inflammatory genes in restenosis (such as monocyte chemotactic protein-3 [MCP-3]), is activated by IκB degradation, leaving the NF-κB dimer-free to translocate to the nucleus to activate specific target genes. To investigate the effect of tissue factor pathway inhibitor (TFPI) on MCP-3 expression and IκB-α degradation stimulated by tumour necrosis factor (TNF)-α in vascular smooth muscle cells (VSMCs), thus further elucidating the mechanism of the inhibitory effect of TFPI on restenosis. Dulbecco's modified Eagle's medium or human recombinant adenoviruses expressing TFPI or bacterial β-galactosidase (LacZ) were used to infect rat aortic VSMCs in vitro. Enzyme-linked immunosorbent assays were used to detect exogenous TFPI expression and reverse transcription-polymerase chain reactions were used to detect MCP-3 expression after TNF-α stimulation in transfected cells. Western blotting and immunofluorescence microscopy were used to examine IκB-α expression. TFPI protein was detected in the TFPI group after gene transfer. The cells were stimulated with TNF-α for 6 hours on the third day after gene transfer. MCP-3 messenger ribonucleic acid expression was lower in the TFPI group than in the LacZ group (P<0.05) and IκB-α degradation was lower in the TFPI group than in the LacZ group in the cytoplasm (P<0.05). TFPI inhibited MCP-3 expression induced by TNF-α; this effect may be propagated through the NF-κB pathway. TFPI gene transfer may be a new therapeutic strategy for inhibiting restenosis in clinical situations.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call