Abstract

Trypsin (E.C.3.4.21.4) is a serine protease commonly used in proteomics for digestion of proteins. In the present study, the effect of nano-TiO2 on the conformation and catalytic activity of trypsin were studied. The thermal denaturation of trypsin has been investigated in the presence and absence of nano-TiO2 over the temperature range (293-373 K) at pH 3.0 and 7.25, using temperature scanning spectroscopy. In presence of nani-TiO2, the ester lytic activity of trypsin is decreased. The result indicates that Nano-TiO2 is a non-competitive inhibitor for enzyme trypsin. With the addition of TiO2 to protein solution at pH 3.0, the maximum intensity of emission spectrum of trypsin is increased. But at pH 7.25, the maximum intensity of emission spectrum of trypsin is decreased. The result of fluorescence spectroscopy indicated that the structure of the Trp residue environments was altered. Increasing the concentration of nano-TiO2 decreases the stability of trypsin to thermal denaturation.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.