Abstract

A deterministic dynamic nonlinear time-delay system is developed to model load balancing in a cluster of computer nodes used for parallel computations. The model is shown to be self consistent in that the queue lengths cannot go negative and the total number of tasks in all the queues and the network are conserved (i.e., load balancing can neither create nor lose tasks). Further, it is shown that using the proposed load balancing algorithms, the system is stable in the sense of Lyapunov. Experimental results are presented and compared with the predicted results from the analytical model. In particular, simulations of the models are compared with an experimental implementation of the load balancing algorithm on a distributed computing network.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.