Abstract
Background:Thymoquinone (TQ), the basic bioactive phytochemical constituent of seed oil of Nigella sativa, is one of these herbal drugs known for antidiabetic effects. This study was carried out to assess the effects of the possible role of TQ on nuclear factor kappa B (NF-κB) and oxidative DNA damage levels in experimental diabetic rats.Materials and Methods:Twenty-eight male Wistar Albino rats (200–250 g) were used as experimental subjects. The rats were divided into four groups, including the control, control supplemented with TQ (CT), diabetic (D), and diabetic supplemented with TQ (DT), each containing seven rats. The D and the DT groups were treated with 45 mg/kg streptozotocin (STZ) (intraperitoneal). TQ was administered 30 mg/kg/day for 21 days by oral gavage in the DT and the T groups.Results:It was determined that glucose, glycosylated hemoglobin (HbA1c) levels and alanine aminotransferase, aspartate aminotransferase, and gamma-glutamyl transpeptidase activities were decreased significantly and approached the control group in the DT group after TQ supplement (P < 0.05). Urea levels were the lowest in CT (P < 0.05). Oxidative DNA damage (8 hydroxy-2-deoxyguanosine) was increased in both of the diabetic groups (D and DT). The NF-κB levels were the highest in Group D (P < 0.05).Conclusion:It was observed that increased glucose and HbA1c levels and the indicators of liver and kidney damages were decreased significantly after TQ supplementation. Oxidative DNA damage and NF-κB levels were increased in the diabetic group, and TQ administration caused a statistically insignificant reduction.SUMMARY In this study, the effects of thymoquinone (TQ), the basic bioactive phytochemical constituent of seed oil of Nigella sativa, on nuclear factor kappa B (NF-κB), oxidative DNA damage levels, and, some biochemical parameters was invesigated. It was observed that some biochemical parameters (glucose, glycosylated hemoglobin (HbA1c), ALT, AST, GGT) were close to the control group after TQ treatment in diabetic group. Oxidative DNA damage (8 hydroxy 2 deoxyguanosine) and NF-κB were highest levels and TQ implementation caused statistically insignificant decrease, in the diabetic group. Abbreviations used: 8-OHdG: 8 hydroxi-2-deoxiguanosin; ALT: Alanine aminotransferase; AST: Aspartate aminotransferase; GGT: Gamma-glutamyl transpeptidase; HbA1c: Glycosylated hemoglobin; NF-κB: Nuclear factor kappa protein; STZ: Streptozotocin; TQ: Thymoquinone.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.