Abstract
Composite materials have gained increasing popularity over the past few decades due to their superior mechanical properties, such as high strength-to-weight ratio, fighting against high temperature and corrosion resistance. The assembly of enormous aeronautical components and structures require the machining of composite materials. Drilling is the most important hole-making process in the final assembly. When drilling composite materials, a number of defects are generating. Delamination caused by drilling thrust has been showed as one of the most problematic defects after drilling composite laminates. With a pressing need for decreased delamination, many studies are turning more and more toward tool geometry and machining parameters. Drilling of composite plates using a step core-ball drill, which is a special drill to improve the chip flow and reduces the thrust force at the exit of hole, is investigated in this study. The experimental results found that the step core-ball drill was efficient in drilling of carbon fiber reinforced plastic (CFRP) and did not produce loading on the drill exit at the proper drilling conditions. The results obtained from this study feeding back for fundamental research efforts could steer future studies on the drilling composite materials in the most promising direction.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.