Abstract
Retrograded starch (RS3) was produced from indica rice starch with three kinds of gums (konjac glucomannan, KGM; carrageenan, CA, USA; and gellan, GA, USA) by autoclaving, respectively, and the effect of the gums on the retrogradation behavior of starch was estimated. The influences of polysaccharide concentration, sodium chloride concentration, autoclaving time, refrigerated time, and pH value on RS3 formation were discussed. Except for sodium chloride’s persistent restraint on RS3, the others all forced RS3 yields higher at first, but lowered it after the peak value. The influencing sequence of these impact factors was: sodium chloride concentration > polysaccharide concentration > autoclaving time > refrigerated time > pH value. The results also proved that in the three gums, KGM plays the most significant role in RS3 changing. It was concluded that the incorporation of each of these three gums into starch, especially KGM, results in an increase or decrease of RS3 under different conditions. This phenomenon could be taken into consideration when developing starchy food with appropriate amount of RS3.
Highlights
Resistant starch (RS) is the sum of starch and the products of starch degradation not absorbed in the small intestine of healthy individuals [1]
RS is reported to possess physiological effects similar to those of dietary fiber, and the physiological effects associated with RS mainly include reducing plasma glucose and insulin levels, increasing fecal bulk, and short-chain fatty acid (SCFA) production through fermentation in the large intestine [2]
Amylose leached from the granules into solution
Summary
Resistant starch (RS) is the sum of starch and the products of starch degradation not absorbed in the small intestine of healthy individuals [1]. RS is reported to possess physiological effects similar to those of dietary fiber, and the physiological effects associated with RS mainly include reducing plasma glucose and insulin levels, increasing fecal bulk, and short-chain fatty acid (SCFA) production through fermentation in the large intestine [2]. It is a promising food additive because of these excellent physiological functions listed above. This allows it to be stable in most normal cooking operations, and enables its use as an ingredient in a wide variety of conventional foods [5]
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.