Abstract

The biomechanical behavior of implant thread plays an important role on stresses at implant-bone interface. Information about the effect of different thread profiles upon the bone stresses is limited. The purpose of this study was to evaluate the effects of different implant thread designs on stress distribution characteristics at supporting structures. In this study, three-dimensional (3D) finite element (FE) stress-analysis method was used. Four types of 3D mathematical models simulating four different thread-form configurations for a solid screw implant was prepared with supporting bone structure. V-thread (1), buttress (2), reverse buttress (3), and square thread designs were simulated. A 100-N static axial occlusal load was applied to occlusal surface of abutment to calculate the stress distributions. Solidworks/Cosmosworks structural analysis programs were used for FE modeling/analysis. The analysis of the von Mises stress values revealed that maximum stress concentrations were located at loading areas of implant abutments and cervical cortical bone regions for all models. Stress concentration at cortical bone (18.3 MPa) was higher than spongious bone (13.3 MPa), and concentration of first thread (18 MPa) was higher than other threads (13.3 MPa). It was seen that, while the von Mises stress distribution patterns at different implant thread models were similar, the concentration of compressive stresses were different. The present study showed that the use of different thread form designs did not affect the von Mises concentration at supporting bone structure. However, the compressive stress concentrations differ by various thread profiles.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.