Abstract
This paper investigates the effect of third-order nonlinearities on the statistical distributions of wave heights, crests, and troughs of waves mechanically generated in a deep-water basin and simulating two crossing systems characterized by bimodal spectra. The observed statistics exhibits various effects of third-order nonlinearities, in a manner dependent on both the distance from the wave-maker and the angle between the mean directions of the component wave systems. In order to isolate and demonstrate the effects of third-order nonlinearities by themselves, the vertically asymmetric distortions induced by second-order bound waves are removed from the observed time series. It appears then that the distributions of wave crests, troughs and heights extracted from the nonskewed records clearly deviate from the Rayleigh distribution, suggesting that the waves are characterized by nonlinear corrections of higher-order than the typical of second-order waves. Nonetheless, some models developed for weakly nonlinear second-order waves can still be used in describing wave heights, crests and troughs in mixed seas, provided that the relevant distribution parameters are modified, so as to reflect the effects of third-order corrections and some basic characteristics of the mixed seas.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Journal of Offshore Mechanics and Arctic Engineering
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.