Abstract

Heat treatments of single crystals of Ni44Fe19Ga27Co10 (at.%) shape memory alloys cause various microstructures of the high-temperature phase. The nanodomain structure, consisting of regions of the L21- and B2-phases, and nanosized particles are the main parameters that change during heat treatments and determine the mechanism of nucleation and growth of martensite crystals, the size of thermal-induced martensite lamellae, the temperature Ms, and the temperature intervals of the martensitic transformation. In the as-grown single crystals, the high-temperature phase has only the L21-structure and the MT occurs at low (Ms = 125 K) temperatures due to the motion of the practically single interphase boundary in narrow temperature ranges of 3–7 K. The reduction in the volume fraction of the L21-phase to 40% and the formation of nanodomains (20–50 nm) of the L21-and B2-phases due to annealing at 1448 K for 1 h with quenching causes an increase in the MT temperatures by 80 K. The MT occurs in wide temperature ranges of 40–45 K because of multiple nucleation of individual large (300–500 µm) martensite lamellae and their growth. After aging at 773 K for 1 h, the precipitation of nanosized particles of the ω-phase in such a structure additionally increases the MT temperatures by 45 K. The MT occurs due to the multiple nucleation of packets of small (20–50 μm) martensite lamellae.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call