Abstract
The transient outward potassium current (I to) and the ultrarapid delayed rectifier potassium current (I Kur) are major potassium currents involved in the repolarization process of sinoatrial node cells (SNCs). The SNCs of neonatal rats were divided into control, ischemia/reperfusion (I/R), I/R+blank serum, and Tongyang Huoxue recipe (TYHX) serum groups. I to and I Kur were recorded using the whole cell patch-clamp technique, and the current-voltage (I-V), steady-state activation (SSA), steady-state inactivation (SSI), and recovery from inactivation (RFI) curves were plotted, respectively. Compared to the control group, both the peak current density and the current density at the voltage of I to and I Kur decreased obviously in SNCs after simulated I/R, the SSA curves moved right, and the SSI curves moved left. After TYHX was added to the extracellular solution of SNCs, both the peak current density and the current density at the voltage of I to and I Kur increased significantly, the SSA curves moved left, and the SSI curves moved right with a significant difference of V 1/2. The recovery from the I Kur RFI curves was slightly restored, and the I to curves did not change. TYHX increases the peak current density, accelerates the activation, and decreases the inactivation of the I to and I Kur. This may be the mechanism of TYHX in shortening the action potential duration of repolarization, which accelerates spontaneous pulsation.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.