Abstract
In this paper we propose the use of the power series method and the Newmark-Beta algorithm to study the mitigation by the tuned mass damper (TMD) of an offshore wind turbine(OWT). The monopile of the OWT is taken as slender beam buried in a homogeneous soil while the tower is considered as tapered slender beam. Mathematically, both monopile and tower are modeled as elastic Euler-Bernoulli beams, with a point mass at the tower top representing the rotor nacelle assembly (RNA). First of all, the power series method is utilized to calculate the first natural frequencies of AF and CS models. The obtained results are compared with the first natural frequency of DS model obtained from FEM-Abaqus with good satisfaction. Next, the obtained mode shapes are used to establish the system of ordinary differential equations (ODE) governing the dynamic of OWT subjected to a TMD. Afterwards, the Newmark-Beta algorithm is employed to solve the ODE. Accuracy of the introduced approach is verified by setting a comparison between our results with those obtained using FEM-Abaqus. Finally, the influence of several parameters on the performance of TMD is shown in some plots.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.