Abstract

The role of the suspensor in the early development of the dicot embryo has been described as merely an anchor or, conversely, as the major route of nutrients into the embryo. In order to further elucidate the role of the suspensor we have examined protein synthesis in early 0.2-mm and late heart stage 0.5-mm Phaseolus vulgaris (var. Taylor's Horticultural) embryos in tissue culture. Protein synthesis was examined in embryos and suspensors. Our results showed that in 0.2-mm embryos virtually all protein synthesis was dependent on an attached suspensor. Maximum protein synthesis in 0.5-mm embryos was observed when embryos were cultured attached to the suspensor. The levels were moderately decreased when the embryo was cultured detached from or without the suspensor. Gibberellic acid at 10 −6 to 10 −7 M elicited the same protein diversity and greater [ 35S]methionine incorporation than did the attached suspensor in 0.2-mm embryos. Embryos of 0.5 mm did not appear to be differentially responsive to various gibberellin concentrations.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call