Abstract
Particle size reduction is a commonly used process to improve the solubility and the dissolution of drug formulations. The solubility of a drug in the gastrointestinal tract is a crucial parameter, because it can greatly influence the bioavailability. This work provides a comprehensive investigation of the effect of the particle size, pH, biorelevant media and polymers (PVA and PVPK-25) on the solubility and dissolution of drug formulations using three model compounds with different acid-base characteristics (papaverine hydrochloride, furosemide and niflumic acid). It was demonstrated that micronization does not change the equilibrium solubility of a drug, but it results in a faster dissolution. In contrast, nanonization can improve the equilibrium solubility of a drug, but the selection of the appropriate excipient used for nanonization is essential, because out of the two used polymers, only the PVPK-25 had an increasing effect on the solubility. This phenomenon can be explained by the molecular structure of the excipients. Based on laser diffraction measurements, PVPK-25 could also inhibit the aggregation of the particles more effectively than PVA, but none of the polymers could hold the nanonized samples in the submicron range until the end of the measurements.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.