Abstract
Electrosprayed nanodroplets impacting on covalently bonded materials at velocities of a few kilometers per second strongly modify their surfaces by sputtering atoms, amorphizing the region surrounding the impact, and carving craters of comparable size. This article investigates the effects of the projectile's molecular mass on the phenomenology of the impact on Si, SiC, Ge, and GaAs at impact velocities significantly higher than previously studied. An appropriate range of molecular mass is covered by electrospraying the ionic liquids ethylammonium nitrate, EAN, and 1-ethyl-3-methylimidazolium bis(trifluoromethylsulfonyl) imide, EMI-Im, which have molecular masses of 108 and 391 amu, respectively. The beamlets are characterized with the time-of-flight technique to determine the impact velocity, stagnation pressure, and molecular kinetic energy of the projectiles, and to estimate their average diameters. The ranges of these parameters are 7–17 km/s, 40–190 GPa, 50–420 eV, and 10–14 nm. Under these condition...
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.